putting rock properties in their place - meshing orientation imaging with grain shape and size distribution

renee.heilbronner@unibas.ch

Holger Stünitz Symposium, Orléans, June 25, 2024

physical properties – at each pixel $|A_{phase}/A_{total} = V_{phase}/V_{total}|$ $|A_{phase}/A_{total} = V_{phase}/V_{total}|$

properties of pixels – properties of grains

where to start ? ... the piezometer ...?

EGU 2016 – surprise surprise !!

- is BHQ stronger in shear compared to coaxial deformation ?! i.e., piezometer not valid for shearing deformation? - is determination of $\Delta\sigma$ from shearing experiments incorrect?

EBSD \rightarrow CIP orientation images of piezometer experiments

58 MPa 60 MPa 102 MPa 87 MPa $\Delta \sigma =$

149 MPa

w1051-m5

189 MPa

w1051-m6

grain boundaries \rightarrow diameters \rightarrow grain size maps

c-axis orientation images

grain size maps

area-weighted of diameters of 2D sections \neq diameters of 3D grains !!

area-weighted histograms

optional excursion: harping on the RMS

recrystallized grains have to be selected from h(d) before calculating RMS (\rightarrow bias) stripstar (2D \rightarrow 3D) converts full h(d) to h(D) and volume weighted v(D) the significant grain size is derived from the mode of v(D) and is independent of the range of h(d)

new EBSD piezo v(D) Gauss fit

Ľ		J

	(MPa)
w1126-m2	34
w1143-m2	58
w1066-m2	60
w1025-m2	87
w1024-m10	102
w1029-m3	130
w1081-m4	139
w1081-m5	139
w1050-m6	149
w1050-m5	149
w1051-m6	189
w1051-m4	189

υ (μm)
94.1
34.5
30.8
29.3
20.0
14.3
11.5
7.7
5.8
9.3
3.3
7.2

derive '3D piezometer'

$$d = 363 \\
 d = 78 \\
 D = 580$$

back to experimental data

EGU 2016 – should we really have been surprised ??

i.e., piezometer not valid for shearing deformation? - is determination of $\Delta\sigma$ from shearing experiments incorrect?

what we could have noted in 2002 ...

should have seen: τ ($\Delta\sigma/2$) of shearing experiments $\approx \Delta\sigma$ of coaxial experiments should have guessed: shearing exp. reg.3 \rightarrow I show lower $\Delta\sigma$ -gradient than coaxial exp.

)	10		
	1 10	100	

	coaxial	shearing
regime	$\Delta \sigma$ (MPa)	$\Delta \sigma$ (MPa)
	650	510
2	310	420
3	180	210
		-

1000

what we could have learned in 2006 ...

corresponding shear stress recrystallized grain size on average is $\sim 17 \mu m$

 $|\Delta \sigma_{\text{piezo}} = 71 \text{ MPa}|$

average measured shear stress was 100 MPa

 $|\Delta \sigma_{\rm meas} \approx 200 \, {\rm MPa}|$

 $\Leftarrow \tau_{meas} \approx 100 \text{ MPa}$

- the difference between stress values is not "reasonable"

2017 old sample at high resolution

IPFZ

CIPspectrum

100 µm

CIP maps from EBSD

CIPspectrum

CIPspectrum

100 µm

run records redone – $\Delta\sigma$ recalculated

2020 recalculated $\Delta \sigma$ yield similar result except for sample 2a-w1086 (wrong run record)

Data five piezos S&T 2003

----- S&T 2003 regime 2/3 ----- S&T 2003 regime I ----- 3D piezometer

dSIG (MPa) recalc 2020

should we worry about spatial resolution?

sometimes lucky EBSD map of previous CIP

stepsize 3D grain size (µm) method (µm) site C siteD 2.64 18 CIP 19 EBSD 0.5 15 16

high resolution decreses grain size \Rightarrow steeper piezometer

coaxial and shear at EBSD resolution

EBSD stepsize = $I \mu m$

500 µm

dSIG (MPa) recalc 2020

----- S&T 2003 regime I

Data five piezos S&T 2003

so what does it mean, Holger ?

... often enough I was more fascinated by the mere fact that I could quantify microstructures, shapes, distributions, correlations... and grain size,

... and often it was Holger who pointed out to me why any of that may actually be interesting

we tried early to get our daughter interested in rocks – no luck !

maybe a better chance with the next generation ?